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Abstract
The calculation of thermal conductivity for complex material systems is a challenging problem
in computational materials science. Its key point is to calculate heat flux. In this work, we derive
a concise formula for this purpose based on the equation of motion and then use it to study the
thermal conduction properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), which
is a widely used plastic-bonded explosive (PBX). The results are in fair agreement with
experiments and show a distinct thermal conduction anisotropy for HMX single crystals. Then
we investigate some key issues of thermal conductivity, such as its temperature-dependence and
composition-dependence. A series of interesting results are obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thermal conductivity is an important performance factor for
energetic materials. It affects the heat accumulation process in
explosions and determines the explosive speed and pressure.
The calculation of thermal conductivity is a challenging
problem in explosives, as they usually have complex molecular
structures. In this work, we use a self-derived heat flux formula
to study this problem for octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrazocine (HMX), which is a widely used plastic-bonded
explosive (PBX) in industry and military engineering.

There are two ways to calculate thermal conductivity by
molecular dynamics (MD), namely the direct and indirect
methods. The former one is usually referred to as Müller-
Plathe’s work [1], and the latter one is the Green–Kubo
formula [2–7]. For Plathe’s method, the main idea is to
set the heat flux (J ) by interchanging high energy and low
energy particles in a certain frequency, and then measuring the
temperature gradient (∇T ). Thermal conductivity is obtained
by Fourier’s law

λ = − J

∇T
. (1)

But in this work, we use another kind of direct method. The
temperature field is preset and heat flux is calculated by a
specific formula, different from Plathe’s method.

The HMX we are interested in in this work is an important
energetic material. It has high explosive speed, pressure, and
energetic level, is the main component of many explosive
products, such as PBX-9011, PBX-9404, PBX-9501 etc [8],
so attracts much attention [9–15]. So far, a large number
of experimental data have been accumulated, and theoretical
analysis based on atomistic calculation is desired.

Furthermore, HMX is an organic material, consisting of
C, N, O, and H, and has four crystalline phases α, β , γ , and
δ. Among them, β is the most stable phase at low temperature
(<380 K), and δ is the high temperature phase between 430
and 550 K, just below the melting point. These two typical
phases are widely studied in many topics, such as thermal
expansion, elastic constants and β–δ phase transformation,
etc [13, 16–21]. Now we pay attention to their thermal
conduction properties.

Figure 1 shows the atomic structures of β and δ-HMX.
Their lattice constants are listed in table 1. We can see that
β-HMX is a monoclinic crystal and δ-HMX is a hexagonal
crystal. So for δ-HMX, the thermal conduction is equivalent in
a and b directions. By the way, the HMX molecule is ‘chair-
like’ in β phase and ‘basket-like’ in δ phase.

In summary, we will use a self-derived heat flux formula
to study the thermal conduction properties of β and δ-HMX,
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Figure 1. Atomic structures of (a) β and (b) δ-HMX.

Table 1. Lattice constants of β and δ-HMX, from [10, 11].

a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)

β-HMX 6.5347 11.0296 7.3549 90 102.69 90
δ-HMX 7.711 7.711 32.553 90 90 120

including thermal conductivity, thermal conduction anisotropy,
temperature-dependence and composition-dependence, etc. A
series of MD simulations will be performed, associated with
careful post-treatment calculations. The following work
consists of four parts. First, in section 2, we present the
interatomic potentials used in this work. Then, in section 3,
the method to calculate thermal conductivity is introduced,
especially the heat flux formula. Next, in section 4, we
perform MD simulations on β and δ-HMX. Their thermal
conductivities are calculated and a series of relative properties
are studied. Lastly, section 5 is the conclusion.

2. Interatomic potentials

In this work, we use quantum-based interatomic potentials for
MD simulations. They were obtained by Smith and Bharadwaj
in 1999 [22] and have been widely used in HMX calculations.
Let us give a brief introduction below.

As we known, HMX is an organic material. Its atomic
interactions include two parts:

V = VNonbond + VValence (2)

where V is potential energy, VNonbond is nonbond interaction,
and VValence is valence interaction.

Figure 2. Two atom groups A and B contacted by a weak interaction
VAB.

For these two kinds of interactions, VNonbond is mainly
intermolecular and VValence is just intramolecular. Both of them
consist of several terms

VNonbond = VVDW + VCoulomb

VValence = VBond + VAngle + VDihedral + VImproper

(3)

where VVDW is the van der Waals interaction, VCoulomb is the
Coulomb interaction, VBond is bond energy, VAngle is angle
energy, VDihedral is dihedral energy and VImproper is improper
energy. The last two are four-body interactions. From this
constitution, we see that VNonbond just includes pair potentials
and VValence includes many-body potentials. A notable result is
that intermolecular interactions are pair-bound.

Paying attention to their function forms, van der Waals
energy is Buckingham style and valence energies are Harmonic
style. They have a large number of potential parameters,
as listed in table 2. In applications, these potentials have
been used to study atomic structures, lattice constants, elastic
constants, and thermal expansions of HMX [17–19, 22]. The
results are in agreement with experiments, so it is reasonable
to use them for thermal conductivity calculations now.

3. Methodology

In this section, we are going to introduce the method used in
this work. It is a direct method. The key point is to calculate
heat flux by a self-derived formula. For this purpose, let us
consider two groups of atoms A and B, as shown in figure 2.
The total energy is

U = EA + VA + EB + VB + VAB (4)

where U is total energy, EA and EB are kinetic energies of
A and B, VA and VB are potential energies, and VAB is the
interaction energy between A and B.

Then, we use xi (i ∈ A or B) as atomic position, ẋi as
velocity, and ẍi as acceleration. For group A, the total energy
is

UA = EA + VA (5)

kinetic energy is
EA =

∑

i∈A

1
2 mi ẋ2

i , (6)

and the equation of motion is

mi ẍi = −∂V

∂xi
= −∂VA

∂xi
− ∂VAB

∂xi
, i ∈ A (7)

where mi is the mass of the i th atom.
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Table 2. Potential parameters of HMX, from [18, 22].

Atom charge
Atom type q (electron)
C −0.540 00
N (amine) 0.056 375
N (nitro) 0.860 625
O −0.458 50
H 0.270 000

Van der Waals term, VVDW = Ae−Bri j − C
r6
i j

Pair type A (kcal mol−1) B (Å
−1

) C (kcal mol−1 Å
6
)

C–C 14 976.0 3.090 640.8
C–N 30 183.57 3.435 566.03
C–O 33 702.4 3.576 505.6
C–H 4 320.0 3.415 138.2
N–N 60 833.9 3.780 500.0
N–O 67 925.95 3.921 446.6
N–H 12 695.88 3.760 116.96
O–O 75 844.8 4.063 398.9
O–H 14 175.97 3.901 104.46
H–H 2 649.7 3.740 27.4

Bond term, VBond = 1
2 K (ri j − r0)

2

Bond type K (kcal mol−1 Å
−2

) r0 (Å)
C–N 672.1 1.44
C–H 641.6 1.09
N–N 991.7 1.36
N–O 1990.1 1.23

Angle term, VAngle = 1
2 K (θi jk − θ0)

2

Angle type K (kcal mol−1 rad−2) θ0 (rad)
C–N–C 70.0 1.8430
C–N–N 130.0 1.6723
N–C–N 70.0 1.9289
N–C–H 86.4 1.8676
N–N–O 125.0 1.8754
O–N–O 125.0 2.1104
H–C–H 77.0 1.8938

Dihedral term, VDihedral = 1
2 K [1 − cos(nφi jkl )]

Dihedral type K (kcal mol−1) n
C–N–C–N 3.30 1
C–N–C–N −1.61 2
C–N–C–N 0.11 3
C–N–C–H −0.16 3
C–N–N–O 8.45 2
C–N–N–O 0.79 4
C–N–N–O 0.004 8

Improper term, VImproper = 1
2 Kϕ2

i jkl

Improper type K (kcal mol−1 rad−2)
C–N–C–*N 8.0
O–N–O–*N 89.3

If there are heat exchanges between A and B, the heat
flux is

JA→B = − 1

S

dUA

dt
= − 1

S

dEA

dt
− 1

S

dVA

dt

= − 1

S

∑

i∈A

mi ẋi ẍi − 1

S

∑

i∈A

ẋi
∂VA

∂xi

= 1

S

∑

i∈A

ẋi

(
∂VA

∂xi
+ ∂VAB

∂xi

)
− 1

S

∑

i∈A

ẋi
∂VA

∂xi

= 1

S

∑

i∈A

ẋi
∂VAB

∂xi
(8)

where S is the contact area between A and B. Also, the heat
flux from B to A is

JB→A = 1

S

∑

j∈B

ẋ j
∂VAB

∂x j
. (9)

Considering their time averages (denoted as 〈 〉), we can prove
that

〈JA→B〉 + 〈JB→A〉 = 1

S

〈
∑

i∈A

ẋi
∂VAB

∂xi
+

∑

j∈B

ẋ j
∂VAB

∂xi

〉

= 1

S

〈
dVAB

dt

〉

= 1

S
lim

t→∞
VAB(t) − VAB(0)

t
= 0. (10)

This shows that JA→B and JB→A are self-consistent.
Turning back to the HMX of interest in this work,

we choose appropriate atom groups to make sure that no
molecules are separated by different groups. As a result,
just intermolecular interactions (pair-bound) are considered for
heat flux calculations; valence energy terms are skipped. For
convenience, let us denote the pair potential as ϕi j(ri j), where
ri j = |xi − x j | is the pair distance between atom i and j . In
this way, VAB is

VAB =
∑

i∈A, j∈B

ϕi j(ri j). (11)

Substituting it into (8), we get

JA→B = 1

S

∑

i∈A, j∈B

ẋi
∂ϕi j(ri j)

∂xi

= 1

S

∑

i∈A, j∈B

ẋi fi j (12)

where fi j = ∂ϕi j (ri j )

∂xi
= − f j i is the force from i to j . Also, (9)

can be rewritten as

JB→A = 1

S

∑

i∈A, j∈B

ẋ j f j i . (13)

As 〈JA→B〉 = −〈JB→A〉, an equivalent definition is
obtained

J = 1
2 (JA→B − JB→A)

= 1

2S

∑

i∈A, j∈B

(ẋi fi j − ẋ j f j i)

= 1

2S

∑

i∈A, j∈B

(ẋi + ẋ j) fi j , (14)

which satisfies 〈J 〉 = 〈JA→B〉 = −〈JB→A〉.
Equation (14) is the final heat flux formula used in this

work. It is derived from the basic equation of motion, and

3
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Figure 3. The layer-by-layer model for thermal conductivity
calculation.

expresses heat flux by atomic velocities and forces, so can be
applied in MD. Comparing this with the one derived for the
Green–Kubo method [23], this derivation is very concise and
also reasonable. It has an advantage that valence energy terms
are excluded by choosing appropriate atom groups. However,
there is also a limitation of this formula. It demands that the
atoms in group A and B be non-swappable, so can only be
applied in solid materials, not liquids.

In order to calculate thermal conductivity, we build a
layer-by-layer model, as shown in figure 3. Each layer is
treated as one atom group mentioned above. In MD simulation,
the left and right layers are NV T ensembles, in high and
low temperatures respectively. The middle layers are NV E
ensembles, whose equation of motion is (7). Heat flux can
be calculated by (14) and temperature gradient is measured
directly. Resultant thermal conductivity is obtained by (1).

NV E means ‘constant particle number, volume, and
energy’. It is the simplest ensemble and just follows the basic
equation of motion (see (7)). NV T means ‘constant particle
number, volume, and temperature’; it asks for a thermostat
algorithm to keep temperature. In this work, we use a Nose–
Hoover thermostat [24, 25] for the NV T ensemble.

4. Results

Now we are in a position to perform MD simulations and
calculate thermal conductivity by simulated results. The MD
program used in this work is LAMMPS [26], the time step is
0.5 fs, and the number of simulated steps is 10 000 (=5 ps).

Figure 4 shows a simulation model of δ-HMX. It has
6000 atoms, 6000 bonds, 10 000 angles, 9000 dihedrals, and
2000 impropers, according to the energy types in table 2. As
Coulomb interaction and valence energy terms consume many

computational resources, we choose middle size models to
study. In this work, 16 CPUs are used for parallel computing,
consuming 3 h for the model in figure 4.

The simulated temperature range is 430–550 K for δ-
HMX (marked in figure 4) and 50–380 K for β-HMX. These
wide ranges are chosen because HMX has a very small thermal
conductivity. We need to set a large temperature gradient (or
wide temperature range) to make sure that heat flux is distinct
from possible fluctuation errors.

Furthermore, the specific direction of target of thermal
conductivity is along the expected heat flux’s direction, which
is vertical to the layers illustrated in figure 3. For illustration,
the model in figure 4 is used to calculate λa of δ-HMX. A series
of similar models are constructed for other calculations.

By the way, thermal conductivities have been calculated
for some small models (just about 1000 atoms) for testing. By
using the time average and space average methods mentioned
below, the results are not sensitive to model size. So we choose
middle size models for the following calculations. They have
fewer than 10 000 atoms.

Table 3 shows the calculated results of β and δ-HMX,
where λa , λb, and λc are thermal conductivities in a, b, and
c directions, and λ̄ is the average value. Also, the available
results from others’ works are presented in the same table for
comparison. Due to the symmetry of the hexagonal crystal, λa

is equal to λb for δ-HMX.
From these results, an HMX single crystal has a

non-negligible thermal conduction anisotropy. Its thermal
conductivity is changed by about 20% in a, b, and c directions.
The average value λ̄ is for polycrystalline systems. It is worth
noting that λ̄ is in fair agreement with experiment and other
calculations (in melting state), just a little higher. This is
because we study perfect crystals in this work, the possible
defects in actual materials are ignored. In principle, defects can
disperse heat flux, so decrease thermal conduction efficiency,
resulting in a reduction of thermal conductivity. This is why
theoretical values are higher than experimental results.

In our mind, the function of defects in thermal conduction
can also be studied by this heat flux formula. But it asks for
complex model construction and theoretical analysis, so needs
preparation. This work concentrates on the method and single
crystals. Advanced studies of defects will be the subject of
future work.

Figure 4. A simulation model of δ-HMX. The temperature is from 550 K (left) to 430 K (right).

4
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Table 3. Thermal conductivities of HMX by calculations and experiments (W m−1 K−1).

This work Bedrova Parrb LASLc Dongd

λa λb λc λ̄ Calc. Expt. Expt. Expt.

β-HMX 0.4718 0.8008 0.6618 0.6448 0.39 0.44 0.42 0.29
δ-HMX 0.3961 0.3961 0.5295 0.4406

a For fluid HMX above 550 K [27]. b Reference [12]. c Reference [8]. d Reference [28].

Figure 5. A rotating molecule in δ-HMX, extracted from MD
simulated results. The time points are (a) 0 ps, (b) 0.4 ps, (c) 0.8 ps,
(d) 1.2 ps, (e) 1.6 ps, and (f) 2 ps.

Moreover, table 3 does not present experimental data
for anisotropic thermal conductivities. This is related to the
synthesis technology of HMX [29]. In fact, the available HMX
single crystal is very small, just hundreds of microns. Its
anisotropic thermal conductivities are hard to measure. So
we just present the available isotropic data in table 3. The
calculation of anisotropic properties in this work is a valuable
evaluation.

And then, we study some key issues of thermal
conductivity. The first is molecular rotation. From simulated
results, we see that HMX molecules are rotating at 430–
550 K, in δ phase, as shown in figure 5. Equation (14)
demonstrates that this rotation also contributes to heat flux. So
for HMX, the constitution of thermal conductivity is complex
and includes contributions from atomic oscillation (or phonon)
and molecular rotation. Fortunately, our method is based on the
equation of motion. It can work well whether the molecules are
rotating or not.

By detailed analysis of this rotation, we find out a
temperature-dependence mechanism for thermal conductivity.
It follows the path of ‘temperature increase’ → ‘molecular
rotation’ → ‘phonon dispersion’ → ‘phonon lifetime
reduction’ → ‘thermal conductivity decrease’. For a
discussion, molecules tend to rotate at high temperature.
The rotating molecules can disperse phonons, so reduce
phonon lifetime. Due to the thermal conduction-phonon
theory [30–32], thermal conductivity is approximately
proportional to this lifetime. Short phonon lifetime makes low
thermal conductivity. As a result, for HMX, high temperature
leads to low thermal conductivity. This is consistent with
the calculated results, as shown in table 3. The thermal
conductivity of δ-HMX (high temperature phase) is smaller
than that of β-HMX (low temperature phase).

Figure 6. Heat flux fluctuation of β-HMX at 300 K, in a small area
of 200 Å

2
. The solid line denotes the expected 〈J 〉 value.

The second key issue is about heat flux fluctuation. This
is a notable problem in calculations, as thermal fluctuation
is distinct at the nanoscale. For illustration, figure 6 shows
the instant heat flux (J ) in β-HMX at 300 K, extracted from
simulated results. The solid line denotes the expected time
average value 〈J 〉. In fact, the amplitude of J is several
times larger than 〈J 〉. So we need to make efforts to reduce
possible fluctuation errors. Two methods are applied, by time
average and space average, respectively. In the timescale,
10 000 simulation steps are performed in MD and the last 5000
steps’ data are used for thermal conductivity calculations. In
the space scale, a series of 〈J 〉 at different positions on heat flux
path are calculated for an average. By using these two methods,
fluctuation is under control. Resultant thermal conductivities
are presented in table 3.

The third issue is about the composition-dependence of
thermal conductivity. In order to study this problem, two kinds
of partial heat fluxes are defined. The first is for atom pairs, the
pair flux, and the second is for single components, the atom
flux.

From (14), heat flux is contributed by atom pairs. As
HMX has four components C, N, O, and H, there are 10 kinds
of pairs C–C, C–N, C–O, C–H, etc. We can decompose the
total heat flux into 10 pair fluxes. For example, JC−N is defined
as

JC−N = 1

2S

∑

i∈A, j∈B
(i, j)=C−N or N−C

(ẋi + ẋ j) fi j . (15)

The statement ‘(i, j) = C–N or N–C’ means the element type
of the (i, j) pair is C–N or N–C. Other pair fluxes are defined

5
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Figure 7. Normalized partial flux distributions for β and δ-HMX.
(a) Pair fluxes, (b) atom fluxes: (b) is derived from (a).

in the same way. They satisfy

J = JC−C + JC−N + JC−O + JC−H + · · · + JH−H. (16)

Figure 7(a) displays the calculated pair flux distributions
for β and δ-HMX. The results are normalized by setting the
largest value as 1. From the figure, β and δ-HMX have a
similar distribution. The pair flux is largest for N–O and
smallest for C–C and H–H.

Based on pair fluxes, we can study atom fluxes for single
components. They are defined as

JC = JC−C + 1
2 JC−N + 1

2 JC−O + 1
2 JC−H

JN = 1
2 JC−N + JN−N + 1

2 JN−O + 1
2 JN−H

JO = 1
2 JC−O + 1

2 JN−O + JO−O + 1
2 JO−H

JH = 1
2 JC−H + 1

2 JN−H + 1
2 JO−H + JH−H.

(17)

It is obvious that

J = JC + JN + JO + JH. (18)

Figure 7(b) shows the calculated results, also normalized.
For a discussion, JC, JN, JO, and JH denote the

contributions of C, N, O, and H to heat flux in HMX. As
thermal conductivity is proportional to heat flux (see (1)),
figure 7 also denotes the thermal conductivity distributions.

From the figure, N and H contribute positively to thermal
conductivity, C and O contribute negatively to it. This is
different from pair flux distribution, in which the N–O pair
contributes most, C–C and H–H contribute least. As a result,
N and H components tend to increase the thermal conductivity
of HMX, C and H tend to decrease it. For explosives, high
thermal conductivity leads to low sensitivity. So N-rich and
H-rich additives are beneficial for HMX’s desensitizing.

At last, we turn back to methodology again. The direct
method used in this work is different from the one introduced
by Müller-Plathe [1]. Its key issue is a self-derived heat
flux formula. This method has some features. First is that
many-body valence energies can be excluded by choosing
appropriate atom groups in applications. This can greatly
simplify calculations. Second is that the heat flux formula is
derived from the equation of motion directly. It is applicable
from low temperature to high temperature, no matter whether

the molecules are rotating or not. Third is that heat flux can be
decomposed into pair fluxes and atom fluxes by this formula.
Composition-dependence of thermal conductivity is studied.
As well as these advantages, this method also has a limitation.
It requires a non-diffusion system, so cannot be applied to the
liquid state. Some improvements are expected in future work.

5. Conclusion

In this work, we derive a heat flux formula from the basic
equation of motion and then use it to study the thermal
conduction properties of β and δ-HMX. Some interesting
results are obtained.

First, thermal conductivities are calculated. The results are
in fair agreement with experiments, just a little higher. And
thermal conduction anisotropy is evaluated for HMX single
crystals, in an amplitude of 20%.

Then, we find out a possible temperature-dependence
mechanism for thermal conductivity. It follows the path
‘temperature increase’ → ‘molecular rotation’ → ‘phonon
dispersion’ → ‘phonon lifetime reduction’ → ‘thermal
conductivity decrease’. As a result, high temperature leads to
low thermal conductivity. This is inconsistent with calculated
results.

Next, heat flux fluctuation is investigated; it is notable
in nanoscale calculations. Time average and space average
methods are used to control this fluctuation.

Lastly, the composition-dependence of thermal conduc-
tivity is studied. We find that for HMX, N and H contribute
positively to thermal conductivity, but C and O contribute
negatively to it. This means that N-rich and H-rich additives
are beneficial for HMX’s desensitizing.
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